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Резюме. Когнитивното радио е технология, която отговаря на все по-нарастващите 

нужди на безжичните комуникации, като осигурява повече възможности за достъп до 

радиочестотния спектър. За да може нелицензираните потребители да реализират своето 

предаване, е необходимо да намерят свободно пространство в спектъра, но това не винаги е 

възможно поради несъвършенствата на каналите. Съвместното наблюдение на спектъра 

допринася за по-точното и надеждно откриване на сигналите на лицензираните 

потребители. В статията е направен преглед на повечето от съществуващите техники за 

съвместно наблюдение на спектъра и алгоритми за споделяне на данните. 

Abstract. Cognitive radio is a technology that meets the growing needs of wireless 

communications, providing more opportunities to access the radio spectrum. In order for the 

unlicensed users to realize their transmission, they need to find free space in the spectrum, but this is 

not always possible due to channel imperfections. Cooperative spectrum sensing contributes to more 

accurate and reliable detection of the licensed users signal. The article reviews most of the existing 

cooperative spectrum sensing techniques and data sharing algorithms. 

 

Introduction 

In recent years, there has been a tremendous 

growth in mobile communications. But spectrum is a 

scarce resource and its use cannot be extended 

indefinitely. At the same time, it is used irrationally, 

as licensed users having the permit to access the 

spectrum, called primary users (PU), do not realize 

their transmissions continuously. The cognitive radio 

comes help making spectrum usage more efficient. 

Users without permit to access, called secondary users 

(SU) or cognitive users (CU), also want to realize 

their transmission. For this purpose, they are 

constantly spectrum sensing, looking for free spaces 

where they can carry out their transmission, without 

interfering with the PU and when the PU appears to 

stop their transmission and immediately leave the 

bandwidth.  

SUs may experience the hidden terminal problem, 

shadow fading, multipath, or receiver uncertainty, 

thereby impairing the spectrum sensing efficiency in a 

highly urbanized environment. Fig. 1 shows SUs with 

various problems [1]. For example, the SU4 is outside 

of the PU transmitter range, and it also experiences 

the receiver uncertainty, because it does not know 

about PU and does not suspect the PU Rx existence; 

SU2 is shadowed - there is no direct visibility with PU 

Tx; and SU1 is subjected to multipath fading because 

it receives many and different attenuating copies of 

the transmitted signal. 

Cooperative Spectrum Sensing (CSS) contributes 

to more accurate detection of the PU signal, using 

spatial diversity of spatially located SUs. Several SUs 

share their own spectrum sensing information to make 

a more accurate combined solution for the presence of 

a PU signal in the channel.  
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Fig.1 Receiver uncertanty, multipath, shadow fading[1] 

Classification of cooperative sensing 

The main types of CSS, depending on how SUs 

share their information from local sensing, are 

centralized, distributed, and relay-assisted. Fig. 2 

shows a model of a cognitive network with centralized 

CSS. Such a network model is studied in 

[2],[3],[4],[5],[6].  

 

Fig. 2 Centralized cooperative spectrum sensing [3] 

Centralized CSS has a common Fusion Center 

(FC). Connection between the PU transmitter and SUs 

in cooperation to observe the primary signal is called a 

sensing channel. For reporting data, all SUs are set for 

control channel. The point-to-point physical link 

between each SU and (FC) is called a reporting 

channel, and it sends the detection results. The FC 

controls and manages the CSS process in three steps. 

First, FC selects a channel or bandwidth of interest for 

detection and instructs all cooperating SUs to make 

individual local detection. Second, all cooperating 

SUs report their detection results through the control 

channel. Third, FC combines received information 

from local detection, selects SU, determines the 

presence of PU, and distributes the decision back to 

the SUs in cooperation. 

  

Fig. 3 Distributed cooperative spectrum sensing [1] 

There is no FC in the distributed CSS, and each SU 

shares the local detection information with their 

neighbors to make a combined decision[7],[8]. A 

decentralized CSS network model is shown in fig. 3. 

Fig. 4 Relay-assisted cooperative spectrum sensing [9] 

In relay-assisted CSS, as shown in fig. 4, SUs 

cooperate to improve cooperative efficiency, as 

reporting and monitoring channels are not ideal 

[7],[9],[10],[11],[12]. Different strategies can be used 

for joint actions: decode and forward (DF) or amplify 

and forward (AF). The AF relay receives the signal 

and sends its amplified version at the same time 

interval. In the DF, the relay decodes the output 

message in one block and transmits the encoded 

message back to the next block or respectively in an 

odd and even time interval. The receiver can decode 

the data if there are no damaged or lost blocks. 

Cooperation model 

For CSS, different cooperative action models of 

SUs can be used. In [1]a classification of the main 

cooperative models is made. They are parallel fusion 

model [13] shown in fig. 5 and model based on game 

theory. 

Fig. 5 Parallel cooperation model [1] 

In the parallel cooperative model, a group of spatially 

distributed SUs make their local detections. They 
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report their statistics testing or decisions to the FC, 

which combines the reported data and takes the global 

decision via the binary hypothesis testing. 

 

Fig. 6 Coalition cooperation model [1] 

In topology, based on game theory [14], there is a 

coalitional and an evolutionary model. A CSS 

coalition model is displayed in fig. 6. SUs can form or 

split a coalition if the detection efficiency in the 

coalition is greater than the probability of local 

detection. An example of an evolutionary model is the 

distributed CSS. Each SU chooses their actions 

whether to participate or not in the collaboration. The 

most commonly used cooperative model is a parallel 

pattern in distributed detection and data fusion. 

Detection Techniques 

Regardless of the CSS model, at first all SUs make 

a local detection. There are different spectrum sensing 

techniques with different computational complexity.  

Matched Filter  

Block diagram of an implementation on matched filter 

based spectrum sensing is shown in fig. 7. 

Fig. 7 Matched Filter block diagram [15] 

The received signal is passed through a filter that 

increases the output signal-to-noise ratio (SNR) by 

reducing the output noise power. A matched filter 

generates a peak signal value and suppresses the noise 

amplitude. The disadvantage of this detector is that the 

signal should be demodulated in advance, but 

synchronization is required for this purpose. This 

means that before the sensing it is necessary to have 

preliminary information about the PU signal, such as 

type modulation, packet format, etc. Most PUs have 

pilot signals, distribution codes, or preambles that can 

be used. Another significant disadvantage is that for 

each type of PU is needed a particular receiver. 

The main advantage of this technique is that less 

time for signal processing is required due to 

coordination - only samples are needed. 

Cyclostationarity-Based Spectrum Sensing  

Sine wave modulation, pulse sequences, wide-area 

codes, cyclic prefixes, or hoping sequences are used to 

modulate signals, resulting in built-in periodicity. 

They are characterized as cyclostationary because 

their statistics, mean value and autocorrelation are 

periodic. The cyclostationary signals transmitted by 

PUs have a spectral correlation that is not present at 

stationary noise or interference. A cyclostationary 

detector block diagram is shown in fig. 8. 

Fig. 8 Cyclostationarity-based detector block diagram [15] 

Cyclostationarity-based detector works very well 

at low SNR, resists noise uncertainty and 

distinguishes transmissions from different types of PU 

signals. The main disadvantage is the length of 

spectrum sensing time to find a PU signal. Other 

disadvantages are the need for a prior knowledge of 

PU signal characteristics and high computational 

complexity.  

Energy detection 

The energy detection is based on the fact, that if 

there is a PU signal, the energy in the channel will be 

significantly more than if there is no signal. The 

energy detection method of spectrum sensing includes 

pre-filtering to separate the bandwidth, digitalizing the 

signal, collecting the energy for each channel, 

comparing this energy with a threshold that is used to 

decide if there is a signal in channel or not. An energy 

detector block diagram is shown in fig. 9. 

The energy detection advantages are easy 

realization, which does not lead to complex 

mathematical calculations, and that the receiver does 

not need a priori information about the PUs signal 

parameters. Therefore, the energy detector is used 

very often in studies [2], [16], [17]. As a disadvantage, 

should be noted its poor performance at low SNR. 
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Fig. 9 Energy detector block diagram [15] 

In [15] and [18], a cyclostationarity-based detector, 

an energy detector and a matched filter detector are 

compared at the local detection and CSS [2], [19]. 

Eigenvalues-Based Spectrum Sensing  

The spectral holes are detected by eigenvalues-

based spectrum sensing, using test statistics, based on 

the covariance matrix eigenvalues of the received 

signal Y. All eigenvalues-based methods rely on the 

fact that the covariance matrix is a diagonal matrix 

only in the noise presence and all its elements are 

equal to σ2, therefore have one eigenvalue, also equal 

to σ2. In the presence of a PU, this is no longer true 

[20].There are different algorithms based on the 

eigenvalues of the covariance matrix, such as the 

generalized likelihood ratio test (GLRT); the 

maximum-minimum eigenvalue detection (MMED), 

also known as the eigenvalue ratio detection ERD; 

maximum eigenvalue detection (MED), also known as 

the Roy's Largest Root Test (RLRT); and energy 

detection (ED).  

In [21], two spectrum sensing algorithms based on 

the eigenvalues distribution in the random matrices 

with large dimensions theory are discussed: MMED 

and ED with the Minimum Eigenvalue (EME), in a 

local spectrum sensing scheme. Authors in [5] have 

submitted a CSS scheme using the RLRT algorithm. 

The advantage of detecting the eigenvalues of the 

covariance matrix is that there is no need for a prior 

information about the PU signal characteristics. This 

detection is called blind. A significant disadvantage is 

the complex mathematical calculations. 

 Primary signal detection 

The most commonly used system consists of one 

PU and one or more SUs. SUs spectrum sense for the 

PU signal. Thus, the system can be modeled as a 

binary hypothesis testing of the PU state: 

H0: y[n] = w[n]    - signal absent  

H1: y[n] = w[n] +s[n]  - signal present 

n = 1, …, N 

y[n] – Receiver signal samples, 

w[n] – Noise samples,  

s[n] – PU signal samples, 

N – The interval of the interest length 

corresponding to the number of samples. 

Detector performance is characterized by metrics 

based on test statistics in the binary hypothesis: 

• Probability of detection - Pd: This is the 

probability that there is a signal in the channel 

when the hypothesis H1 is true. 

• Probability of false alarm - Pfa:  The probability 

of having a signal with a valid hypothesis H0. 

These are the undiscovered holes in the spectrum - 

a missed opportunity. 

• Probability of miss detection - Pmd: The 

probability that a signal is not present when H1 is 

true. If there is a signal in the channel, SUs 

indicate that the channel is free. These are free 

channel messages when it is busy. 

Pmd = 1 - Pd 

Data fusion 

An important point of CSS is the data fusion from 

the local SUs detection when deciding on the presence 

of a PU signal in the channel. Local detection results 

may be of a different type, size, form, depending on 

the control channel bandwidth. Data sharing can be 

done in two ways: Soft Combining [22],[23] and Hard 

Combining [24],[25],[26],[27]. 

Soft Combining 

SUs transmit to the control center the complete 

statistics from the local observation or all samples 

without any decision at the local detection. Various 

consolidation techniques can be applied in the FC, 

such as: Maximal Ratio Combining (MRC) [28], 

Equal Gain Combining (EGC) [29], Square Law 

Combining (SLC) [30], Selection Combining (SC) 

[31]. 

Fusion with the soft combination provides better 

performance than hard, but it requires more control 

channel bandwidth, and generates more costs than the 

fusion with the hard combination [23]. 

Hard Combining 

The [26] has considered the hard combining policy 

efficiency when making decision on AWGN channels. 

Each SU takes a binary decision for the PU activity 

and the local decisions are reported in FC through the 

reporting channel. 

∆𝑘 =  {
1,          𝐸𝑘 >  𝜆𝑘

0,        𝐸𝑘  ≤  𝜆𝑘
   (1) 

FC takes the final decision on either the OR, AND 

or the MAJORITY fusion rule, which can be 

summarized as a "k-out-of-n" dropping rule. 

 The OR function determines that the PU signal is 

present when at least one SU reports "1". 

{
𝐻1 :      ∑ ∆𝑘≥ 1𝐾

𝑘=1

𝐻0 :     ∑ ∆𝑘< 1𝐾
𝑘=1

   (2) 

The AND function determines that the PU signal is 

present when all SUs report a "1" decision. 

{
𝐻1 :      ∑ ∆𝑘= 𝐾𝐾

𝑘=1

𝐻0 :     ∑ ∆𝑘≠ 𝐾𝐾
𝑘=1

  (3) 
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In the voting rule, if at least N of K users have 

detected a signal 1 ≦ N ≦ K. The test is formulated 

as: 

{
𝐻1 :      ∑ ∆𝑘≥ 𝑁𝐾

𝑘=1

𝐻0 :     ∑ ∆𝑘< 1𝐾
𝑘=1

  (4) 

Rules AND and OR are a private case for N = K 

and N = 1. 

For simplification two assumptions were made: 

• the reporting channel is error-free; 

• the SU has information about the SNR statistics 

of the received PU signals. 

These assumptions are practically not real in the 

cognitive network.  

The probability of CSS Qd and the common 

probability of a false alarm Qfa are defined as: 

𝑄𝑑  = 𝑃𝑟{∆ = 1| 𝐻1} = 𝑃𝑟 {∑ ∆𝑘 ≥ 𝑀|𝐻1
𝐾
𝑖=1 } (5) 

𝑄𝑓𝑎 = 𝑃𝑟{∆ = 1| 𝐻0} = 𝑃𝑟 {∑ ∆𝑘 ≥ 𝑀|𝐻0
𝐾
𝑖=1 } (6) 

where Δ is the final decision. 

Energy efficiency and detection reliability 

Conventional detection methods and schemes are 

not effective enough, especially for low SNR or for 

noise uncertainty in the channel [32]. Therefore, many 

studies have proposed new, optimized schemes to 

increase detector efficiency, while reducing detection 

costs. In [33] authors calculate the optimal number of 

SUs to obtain maximum energy efficiency. Similarly, 

[34] has introduced an effective optimization factor-

number of SUs to minimize the probability of a 

complete error. The optimization of the number of 

collaborative SUs and the sensing time is done by 

increasing the size of the network [35].  In [36], a fast 

differential development algorithm is proposed to 

optimize CSS energy consumption, considering a 

sleep scheme and a censoring mechanism.  

In [37]a decision censoring scheme is proposed 

that leads to better results than the conventional fusion 

rule “k-out-of-n”. The message "No solution" sent to 

FC by some sensor node leads to improved CSS. By 

censoring the collected local decisions, only users 

with sufficient information are sending their decisions 

to the common receiver [38]. 

For a more reliable detection in [39], a hybrid CSS 

is proposed that utilizes the diversity of reporting 

channels. SUs with good quality reporting channels 

carry the quantized statistics for local detection in FC, 

and the other SUs report their local decisions. FC 

takes the final decision by performing a hybrid 

combination. [16] is proposed a two-step scheme 

giving a two-bit decision. In [40], two-stage spectrum 

sensing detectors are proposed. The first stage consists 

of a multiple energy detectors (MED) where each 

energy detector (ED) has a single antenna with fixed 

threshold (MED_FT) for making a local binary 

decision and if necessary, includes the second stage 

consisting of an ED with an adaptive double threshold 

(ED_ADT). The scheme is shown in fig. 10. 

Fig.10 Two-Stage Detectors with Multiple Energy 

Detectors and Adaptive Double Threshold [40] 

To improve the energy efficiency of detection in 

[3], a two-step CSS scheme using a one-bit decision, 

as shown in fig. 11, is proposed. If the SNR is high or 

no PU transmission is detected, only one coarse 

detection step is required to reduce the energy and 

detection time. When there is a PU signal, fine 

detection is performed to increase the precision. The 

authors also propose a second algorithm to improve 

energy efficiency at the same time of observation. It 

uses the local decision for coarse detection. These two 

algorithms are further developed in [41]. 

Fig.11 Two-stage one-bit CSS scheme [3] 

In [23], a softened two-bit scheme is introduced for 

hard combining, as soft combining schemes require 

monitoring resources and feedback for each SU. In 

conventional hard data combining schemes, a 

threshold dividing the range of observed energy into 

two regions is introduced, and SUs fall into them even 

if they carry different energy values. A two-bit 

scheme is proposed, including three thresholds, 

dividing the range of four regions where SUs have 

energy with different weights. FC determines the 

presence of a signal using the following equation: 

∑ 𝑤𝑖𝑁𝑖 ≥ 𝐿,3
𝑖=0   (7) 

where N is the number of observed energies falling in 

region i and wi is the weight of region i. In [25], the 

idea is further developed and a three-bit scheme, 

including 7 thresholds, is proposed. This scheme has 

the benefits of both soft and hard combining, 

achieving a compromise between cost and detecting 

results. A modified double-threshold energy detection 
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(MDTED) for each cluster, location, and channel 

information is used to improve the detection algorithm 

in wireless sensor networks [42]. Due to the large 

amount of data, the algorithm is optimized by 

reducing the number of nodes in one cluster. 

Security 

An important part of the common decision is the 

accuracy of the SUs decisions. Incorrect data can lead 

to a generally wrong decision. Errors may be of a 

malfunction or due to intentional actions of some SUs, 

called malicious users. Fig. 12 shows a graph of the 

probability detection according to the SNR. One of the 

SUs gives the wrong solution for the presence of a PU 

signal in the channel [43]. 

Fig. 12.  Pd(SNR) curves for 4 SUs [43] 

The malicious users are classified into three 

groups, depending on the result of the observation in 

[44]: always Yes, always No and the opposite result. 

Secure spectrum cooperation, based on a goodness-of-

fit (GOF) test that summarizes the discrepancy 

between observed samples with theoretical 

distributions or empirical distributions and reference 

distribution is proposed. The concept of smart primary 

user emulation attacker (PUEA) is introduced in [45]. 

They imitate the PU signal to deceive SUs and not 

allow them to the free bands. CSS rules, working in 

the presence of such attackers are presented. The 

problem with the suppression of multiple malicious 

users, performing spectrum sensing data falsification 

(SSDF) attacks in cognitive radio network with CSS is 

studied in [46]. An algorithm to suppress these 

malicious users is used in FC. It may be an adaptive 

weighting algorithm, a Tietjen-Moore test, or Peirce's 

criterion.  

Conclusions 

CSS is an important part of the process of the 

spectrums rational utilization. This article reviews the 

spectrum sensing techniques and notes their 

advantages and disadvantages. Conventional CSS 

schemes using soft and hard data combining, as well 

as the benefits they bring, when there are fading, 

shadowing, and multipath in the channels, are shown. 

The optimization problems and reliability of detecting 

are discussed as different hybrid schemes, increasing 

the sensing efficiency, while maintaining or reducing 

energy costs are presented. Various strategies to 

increase security by reducing the impact of attacks by 

malicious users are also included in the review.  
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